Linking electronic documents and standardisation of URL’s

By Theo van Veen

Koninklijke Bibliotheek, The Hague

Introduction.

Since the introduction of HTML and http, search and retrieval and navigation in distributed information have become very user friendly and easy. This is because information is presented more and more in such a way that information related to what is on the screen is only “one click away”. By presenting metadata in a smart way it is possible to improve this navigation functionality by dynamic linking and most often this dynamic linking is in fact a new search within the same database.

To improve this navigation functionality further, exceeding the borders of single systems, one has to provide the information in such a way that services can rely on each others metadata. These services will then be able to provide dynamically generated links into those other services, even though these services may be unknown to each other. In this way information that is distributed over mutually independent systems, will become accessible as seemingly integrated systems. The key to this is agreements on the way information is presented to the user in HTML and XML pages and the way information is requested from the target systems via URL’s with commonly agreed syntax.

At the moment the title for this paper was issued, it was the intention to propose a standard format for URL’s to allow dynamic linking of resources. As it seemed that there was already a standard on its way, namely the OpenUrl standard, it was decided to consider this standard as given and change the scope of this paper accordingly. This paper now focuses on what libraries and information providers can do to add additional functionality that might be achieved by using this OpenUrl standard as a starting point and how this functionality can be increased even more by combining this with standardising the results in XML.

The most important spin-off of the OpenUrl standard is SFX, which stands for “special effects” and is developed by the Ghent University and further developed to a commercial product by Ex Libris. The additional functionality that will be proposed and discussed in this paper will be based on the use of http, XML, SFX and OpenUrl and concerns:

1) Allowing for a personal dynamic link page

2) Introduction of additional responses on a query and the way the user can specify these results

3) Presentation of references in electronic articles and offering resolution services

4) Presentation of metadata concerning searchable digital objects (databases)

It will be discussed that standardisation, allowing for some flexibility and tolerance can improve navigation without imposing a lot of development efforts on those information providers who want to offer this functionality.

Standardisation, flexibility and tolerance.

In the developments of electronic search and retrieval standardisation has always been a key factor in the development of new technology. Standardisation can be straightforward but could also incorporate intelligence, tolerance and flexibility. For example a standard could specify: if X is requested from a service than that service delivers X and only X. If X is not available that service responds with “error; not available”. This could be very well conform a given standard. A more intelligent standard would allow the service to respond with: “X is not available but I can offer a service similar to X”. This can still conform to a standard but at the same time it can offer more functionality. Another example is that the service can respond with “I can offer you Y”, when in fact X was requested. It is the requesting party that decides whether Y might be useful or useless. So standardisation can be reached in different ways from very strict to very tolerant, flexible or intelligent.

A server and a client may negotiate about the possible requests and responses within a standard, making it more flexible, but the result could also be the opposite. Sometimes the option to negotiate about the communication between client and server gives the impression that there is intelligence added to the functionality of a service but in fact the result may be that it actually requires more intelligence on both sides. And in such a case a lack of intelligence on one side will effectively reduce the functionality. A simple example is that the server accepts Boolean queries and the client first asks the server to explain what search algorithms are supported. If the server is not able to answer this question the client may decide not to send a Boolean query at all, even though a Boolean query would have worked.

It is stated here that standardisation with enough tolerance built inside increases flexibility and facilitates further development of a standard. The proposed features in the next part of this paper require some mutual agreement to let them work but at the same time it is proposed to allow adaptation to best practises.

Personal link page.

Presentation of metadata is usually done in such a way that the pages are a combination of fixed text and variable fields from a metadata record. When the variable fields from the metadata are substituted in the query part of an URL in a presented hyperlink then the result is a dynamic link. For example the author of an article can be presented in such a way that it is clickable to find more articles from this author. Normally clicking such a link results in a new search in the same database. By standardisation of the syntax of these search URL’s, it becomes quite easy to dynamically generate links to other databases by changing the target part of the URL. This is the principle of OpenUrl and SFX.

By presenting links as the combination of a base-url and a query part, many different combinations of target and query will be possible. To keep it simple it makes sense not to present al those combinations directly to the user but present the possible links in a page separate from the metadata. This has the additional advantage that links to targets that are not OpenUrl-aware can be translated to the right query syntax. What happens is in fact that an “in between page” is generated based on variable information from the presented metadata in a standard form (OpenUrl) and that with this information in this “in between page” new links are generated. Each link consists of a base-url pointing to a relevant host and a query that contains the relevant search terms.

In the SFX case this link page is generated by the SFX-server or a system where the user and his permissions are known. The first proposal of this paper will be to allow the user to specify his own link page with databases of the user’s own choice. I call this the personal link page or just plp. The solution to achieve this is extremely simple. This is shown below and to improve readability it is simplified (and therefore not exactly matching OpenUrl).

	<script>

function getbase_url()

{

name_values=document.cookie.split(";");

for (i=0 ; i != name_values.length ; i++)

 {

 value_pair=name_values[i].split("=");

 if (value_pair[0] == "base_url")

document.forms["set_base"].baseurl.value=value_pair[1];

 }

}

function setbase_url(baseurl)

{

cookie_text = "base_url=" + baseurl + ";"

document.cookie=cookie_text;

}

function get_personal_page()

{

personal_url=document.forms["set_base"].baseurl.value + openurl;

plpw=window.open(personal_url,"plpwin","");

}

function add2url(x,y)

{

if (openurl == "") openurl = x + "=" + escape(y);

else openurl = openurl + "%26" + x + "=" + y;

}

</script>

What we see above are the lines of JavaScript that are added to the presented page to allow the user to specify his own base-url and put this base-url in a cookie so the next time he accesses this target his base-url is automatically filled in. The functions are :

1) check if the base-url is already set in a cookie

2) set the new base-url (initiated in a form on user request)

3) open the personal page by means of the openurl

4) a function to add a variable to the openurl

Below the HTML and javascript is shown with:

1) the function that opens the personal link page

2) a form allowing the user to set his base-url

3) a piece of javascript that adds a specific field (in this case the title) to the OpenUrl. This function was defined above.

	<script>

function plp()

{

plpurl=document.forms[set_plp].basurl.value + openurl;

plpw=window.open(plpurl,"plpwin","");

}

</script>

<form name="set_plp">

<input type="button" value="Goto PLP" onclick="plp()" />

<input type="button" value="Set PLP" onclick="setbase_url(baseurl.value)" />

<input type="text" size="30" name="baseurl" value="start.html?" />

</form>

<script>

add2url('title','This is the title');

</script>

What happens is that, if the cookie has been set with the user’s base-url, the target system can use this base-url as a default, but leaving the option to the user to change it at any time.

This base-url can point to any system and any page but the most convenient use is to let it point to a page on his own workstation. In that case the base-url is nothing more than just then just the file name of his personal link page (with a questionmark behind it to separate it from the query). A very simplified example is shown below. In this example the issn is extracted from the search part of the url and a button is presented to search on that issn.

	<html>

<script>

srch=unescape(location.search);

srch=srch.substring(1,999);

sarray=srch.split("&");

issn="";

for (i=0 ; i<sarray.length ; i++)

 {

 ind_key=sarray[i].split("=");

 if (ind_key[0] == "issn") issn=ind_key[1];

 }

function search()

{

if (issn== "") alert("No issn");

else location="http://hognose.kb.nl/cgi-bin/gurl2url.pl?issn=" + issn

}

</script>

This is a very simple example of a personal link page. Click here to search on issn.

</html>

The above example is meant just as an illustration of the concept and is easily extended to a more sophisticated personal link page. It is supposed that this personal link page, at which the base-url is pointing to, is made by the user or supplied by others. This page can be completely personalised and may contain links that the target that presented the metadata is not aware of.

If the few lines of code from to set and use the base-url are always presented to the user a very powerful mechanism is created. It allows the user to link from metadata found anywhere in the world to any system of his own choice. Wherever he finds the metadata for a publication, for accessing the digital object itself he may be pointed to the database for which he is authorised. The system where he first found this metadata record doesn’t have to be aware of the user’s identity or his permissions, because it links to systems that were chosen by user himself . The simplicity by which this is achieved is amazing.

There is another advantage. A single query can be sent to distributed resources simultaneously and the user is again free to specify his own targets. This still can be done by a simple html-page with some JavaScript in it and it allows for some functionality that is usually only obtained with Z39.50 gateways.

The standardisation that is proposed here to obtain this functionality, only concerns the way the base-url has been set in a cookie with the name “base_url”. This cookie has to be set once for each relevant target.

As XML is used more and more, it is expected that in the future this base-url can be defined in personalised XSL stylesheets, but at the moment setting the cookie is probably the best achievable solution.

Additional query responses.

The integration of distributed information is often obtained by sending a query to multiple targets. The gateways that support this are generally Z39.50 gateways but there seems to be a tendency to support other protocols as well. Especially when targets accept the OpenUrl for the input and produce metadata in XML as output also http is supported by several gateways. In general the result of a search via such a gateway is a brief display for each target. In this brief display the links to the full display are presented.

The flexibility of some gateways (Decomate, Metalib) in supporting other protocols than Z39.50 offers the opportunities to allow for other responses than only a brief and full display. If additional information is presented this can help in improving the query.

The result of a query could be a combination of the following items:

1) The number of hits

2) A list with brief title descriptions

3) A list with full title descriptions

4) A scan result (alphabetic environment of search term) with the number of hits for each term

5) The first full title description that matches the query

6) In case of “no hits” the words that are most similar to the query term

7) In case of a phrase the number of hits for each word in the phrase

8) Etc.

The user wants to be able to define his own search strategy, based on the previous results and he wants his next page – whatever that will be - to be “one click away”. So why not present navigation pages in the case his search was less successful. This would allow the user to refine his search and the most prominent use of this is in situations that a single query is being broadcast to distributed targets and the results are combined by a gateway.

Let us consider the following simple case. A query is distributed to several systems and for all these systems the result is “no hits” (e.g. because of a typing error). Now suppose that one of the targets presents a result in XML with a list of terms that result from a fuzzy search. If the gateway that receives this response is able to interpret this XML page it will be able to present this to the user and the user will be able to redo his search by clicking one of the presented terms.

A more generic approach is that the server (target) tries to answer with a response that is as close as possible to what has been requested and that the client (origin) “makes the best of it”. This approach is rather unconventional but very powerful as the client might “learn” from the results (that is that the developers improve the client).

This response may consist of different kinds of response blocks that are machine interpretable. Each response block is self-containing and consists of XML-tags that can be used to generate a new query. The agreement between the different information providers concerns the naming of the individual tags. The exact combination of tags within a response block and the exact combination of response blocks is up to the target. The target is allowed to present tags that are new and therefore not within an agreed standard. In this way a target can improve its responses and if the client is not able to process a part of it, it just doesn’t present that part to the user. If the client receives unknown tags the administrator that maintains the client can of course change the client to adapt to these new tags.

As soon as there are more type of response blocks possible it becomes relevant to offer the possibility to allow the client to request for a certain response block. One of the reasons to do so is that a user, a portal or gateway may first want to investigate the effects of a search before requesting for the actual search. Or, if a search does not result in any hits, the user or gateway may request for a certain response block to improve his query. An example of a very common response request would be a XML formatted index browse list, which in Z39.50 is known as “scan”.

The question is now how to specify the preferred output. In the http-request extra information is needed to specify these preferences. Either a new standard URL for this purpose has to be defined for this additional information or this additional information has to become a part of the OpenUrl. In the OpenUrl specification, there are three possible zones: a global-identifier-zone, a local-identifier-zone and a metadata-object-zone. These zones are used to hold the fields that identify the requested information. The local-identifier-zone would be the most appropriate place within this standard to put such a request in. In this way one keeps within the agreed standard. On the other side having an extra zone, in which the preferences with respect to the output can be specified, allows for a structured overview of the fields in this url.

Simple examples of queries are shown below (a proposal for an exact definition is not within the scope of this paper):

http://demo.demo.nl?pid=einstein&response=scan_only&number=10

or http//demo.demo.nl?doi=10.12345/12345&response=full_display_only&number=1

Without a response specification it is up to the target what to present (of course within reasonable limts). With a specification like “scan_only” or “full_display_only” the target is requested “to act accordingly if possible”, but the client may not rely on this.

This is one of the points where flexibility and tolerance become relevant. Suppose an information provider wants to add a new type of response block. Instead of waiting for a new standard that has been agreed upon, the provider just adds the new response block to the query results. This response block won’t harm anybody, as it just is not presented in the client. It is up to the clients (or those who maintain the client) to accept this additional response block and change their XSL style sheets in such a way that the user can use these terms to improve his query: let the user be only one click away from his next page. On the other hand an information provider may wish to accept extra input that was not already agreed within a standard. It is then up to the targets to accept or neglect this extra input like XSL-sheets do: that are not defined are just not processed.

The main reasons of keeping flexibility and tolerance in the request-response instead of proposing a well defined standard are that there is not really a necessity for such a strictly defined standard and it allows the adaptation of this mechanism to its practical use. The naming of the tags and their hierarchy have to be agreed upon.

Presentation of electronic references

When an article is presented as full text it will normally end with references and how frustrating it is that accessing referenced articles is not “one click away”. The most obvious solution is that references are presented in such a way that they are “clickable” and link to the electronic version of the article that is referred to.

It is obvious to use the OpenUrl mechanism for this purpose. Again we distinguish between the base-url and the query part of the url. The query part has to be deduced from the metadata describing the reference. The base-url will point to a page that accepts the OpenUrl and will be defined by the user or by the information provider.

There is a solution for this by using the concept of DOI-resolution according to this CrossRef initiative. The DOI is the unique identification of the digital object that can be obtained from a DOI-agency in exchange for metadata concerning the article. This DOI-agency keeps record of the issued DOI’s and their corresponding metadata. There is a difference between identification and localisation. The DOI itself only identifies the publication. The metadata at the DOI-agency will in general contain the locations (URL’s) where the article was stored at the moment of requesting the DOI. In most cases this will be the publisher’s location.

Below I explain how this mechanism works.

1. The references in an article are presented as: metadata (title, journal, author etc) plus a clickable DOI. If the referenced article does not have a DOI yet, the publisher may request the DOI at the time of publishing.

2. The user clicks the DOI and is directed at the DOI-resolver.

3. The DOI-resolver presents the metadata with the URL’s directing to the publishers sites where this article can be found.

4. The user may request the article from the publisher’s site or from the other sites that the DOI’s metadata is pointing at.

5. If the DOI system supports the concept of PLP it will be possible to link to a deposit systems that the user has access to.

This mechanism is commonly accepted by a lot of publishers that have adopted the CrossReff initiative and support the DOI mechanism. There are however some requirements that are not always fulfilled. First a user (or his library) must have access to the DOI-resolver and second he must have access to the publisher’s site he is directed to. Third not all articles have a DOI, especially the older articles will not have one. It therefore does not work retrospective. And a fourth point is that authors and publishers do not have control over the identification of all publications they refer to.

Although it will be difficult to solve all the problems mentioned here, there are some things libraries can do to make references link to a service with a high chance of resolving the reference. First it is needed that a reference is presented in XML or with an OpenUrl link with as query part e.g.:

issn=<ISSN>&vol=<VOL>&pag=<page> etc.

As this should be available at the moment of writing or publishing the publication in HTML or PDF format, this assumes that the mechanism used for linking to the publications is fixed and known at the moment of publication. This is not the case for older publications and this will need a conversion by the provider of this information. Although this will be a very hard job to do, let’s assume that this conversion can be done and can be done on the fly. Now the possible results can be the following:

1) A publication in HTML with OpenUrl as links

2) A publication with a separate page with OpenURL links

3) A publication in XML format with recognisable fields to be used to generate an OpenUrl

4) A publication with a separate page with the OpenUrl fields in XML format

With the mechanism presented in the first part of this paper there will be a base-url (or personal link page) added to this query and a search can be performed in the database preferred by the user. However this base-url does not have to guide him to the databases that have these journals in deposit. The OpenUrl is in many cases a so called “just in case” link. So if a query based op OpenUrl does not give any hits, additional information with respect to other potential locations of the requested publication would help: a local redirection system should provide the user with the correct base-url (or a best guess).

This local redirection system in fact will return a new URL which again might be (but does not have to) an OpenUrl. The base-url needs to be obtained from a local database which contains the information to find the base-url’s. So the server needs to explore the query and based on the fields in this query it has to estimate which other server could provide the requested publication. The most obvious example of such a service would be that a (e.g. national) system has a table with for each issn (within a certain scope) the base of the location that can provide the publications corresponding to that issn.

As long as not all publications have a DOI we need additional services in locating digital objects, especially libraries can offer additional services. Thus, to improve the presentation of electronic references, the information provider should convert the references to OpenUrl links and at the same time offer a redirection table for those items for which information about the most obvious location is available or can be deduced from the metadata.

Electronic resources

A lot of information is hidden in databases that are not visited by the robots of the well-known search engines. What can be done to make this information available to search engines? Either we should make the information in databases available to the conventional search engines as normal web pages or we should introduce additional mechanisms to make this hidden information available.

The gateways and portals that can perform distributed searches on a single query have in most cases a fixed list of targets and the user is offered the possibility to select those targets that he wants his query to be sent to. The list of targets is usually a fixed list with checkboxes. Some gateways allow users to add their own targets and even allow the targets to be the result of a subject search so the list of targets can be dynamically adapted to the specific search to be performed (Metalib, Decomate).

If metadata describing available targets are disclosed and presented just as metadata for other digital objects, it will be possible to obtain a higher flexibility in navigation, even without the need for a specific gateway. A possible scenario will be the following. First a search is performed with respect to a certain subject. The result of this search is a list with digital objects some of which are again searchable databases. The next step would be to have the queries related to that subject propagated to these distributed targets (searchable databases) as found in the first query.

An example of a database containing electronic resources is Dutchess which is know as a Dutch subject gateway. Although only a few of these resources are searchable, the challenge is to present the metadata describing databases in such a way that the user is alerted on the fact that the database is searchable and that the syntax of the query is known.

With the above described mechanism there is a reasonable “in between” solution. It does not require the whole world to be visited by search engines as we make use of existing local indexes. At the same time it does not require a search query to be distributed over the whole world as the number of systems, that the query is propagated to, can be limited by a first search (e.g. subject).

And it is essential that the user, when selecting a searchable database, is not annoyed with new home page when the next search can be done automatically and is only “one click away”.

Although it will be possible to present a JavaScript function that will offer such functionality, the best solution is to present that data in XML with a commonly agreed DTD like proposed in the second part of this paper. An example of how the XML looks like is (the tag names are arbitrary and again a proposal for the exact DTD is out of the scope of this paper):

	<caption-list>

 <caption>

 <caption-title>This is a normal title</caption-title>

 <caption-author>Einstein</caption-author>

 </caption>

<caption>

 <caption-title>This is a searchable database</caption-title>

 <caption-author>Jones</caption-author>

 <caption-url>http://www.worcesterart.org/cgi-bin/perlfect/search/search.pl?q=</caption-url>

 </caption>

</caption-list>

Due to the <caption-url> the client receiving this data becomes aware of the fact that this item is searchable and knows the syntax of the query and is therefore able to offer the possibility to propagate a query to the targets for which there was this <caption-url>.

The piece of the XML style sheet that can handle this is:

	 <xsl:for-each select="query-result/caption-list/caption">

 <xsl:value-of select="caption-title" />

 <xsl:value-of select="caption-author" />

<xsl:if test="caption-url">

<script>

 get_syntax('<xsl:value-of select="caption-url" />')

 </script>

</xsl:if>

</xsl:for-each>

<form>

<input type="button" name="srch" value="search databases for" onclick="perform_search(this.form.query.value)" />

<input type="text" name="query" value="" />

</form>

Of course the functions “get_syntax()” and “perform_search()” should be defined appropriately, but those details are left out here.

For those entries that are related to a searchable database a button was added to allow the search string to be propagated. As this is only a simulation the results are rather poor, but the potential power of this mechanism is very high because of its simplicity. It does not impose a large load on systems as searches are only selectively propagated to the other systems.

An example of a database that would be appropriate to adapt to such a mechanism is Dutchess. Especially in new projects it advised to consider the option of presenting searchable databases as digital objects and offer a “one click” search facility. The most obvious protocol for harvesting the metadata of searchable databases is probably the “Open Archives Inititive” protocol.

Conclusions.
In this paper examples are given of how standardisation of URL’s can increase the facilities for linking between electronic objects. It is discussed that besides standardisation of the URL’s additional linking functionality can be obtained by standardisation of the output in XML especially when the searchable databases are also described as electronic objects. As OpenUrl is submitted to the NISO as a standard it is obvious to conform to this OpenUrl standard. With some additional “approved” tolerance in the URL-request and the XML-response navigation facilities can still improve without being restricted by a standard.

References.
[1] Paskin, Norman. The DOI Handbook, version 1.0.0 Februari 2001.

[2] Van de Sompel, Herbert; Hochstenbach, Patrick and Beit-Arie, Oren. 2000. OpenURL syntax description. <http://www.sfxit.com/openurl/openurl.html>

[3] Van de Sompel, Herbert and Hochstenbach, Patrick. 2000. Cookiepusher document. <http://www.sfxit.com/openurl/cookiepusher.html>

[4] Van de Sompel, Herbert; Krichel, Thomas, Nelson, Michael L. and others. 2000. The UPS Prototype: An Experimental End-User Service across E-Print Archives. D-Lib Magazine. 6(2). <http://www.dlib.org/dlib/february00/vandesompel-ups/02vandesompel-ups.html>

[5] Van de Sompel, Herbert; Lagoze, Carl. The Open Archives Initiative Protocol for Metadata Harvesting.

<http://www.openarchives.org/OAI/openarchivesprotocol.htm>

[

6] Decomate II, <http://www.bib.uab.es/decomate2>

